Real Data Augmentation for Medical Image Classification
نویسندگان
چکیده
Many medical image classification tasks share a common unbalanced data problem. That is images of the target classes, e.g., certain types of diseases, only appear in a very small portion of the entire dataset. Nowadays, large co llections of medical images are readily available. However, it is costly and may not even be feasible for medical experts to manually comb through a huge unlabeled dataset to obtain enough representative examples of the rare classes. In this paper, we propose a new method called Unified LF&SM to recommend most similar images for each class from a large unlabeled dataset for verification by medical experts and inclusion in the seed labeled dataset. Our real data augmentation significantly reduces expensive manual labeling time. In our experiments, Unified LF&SM performed best, selecting a high percentage of relevant images in its recommendation and achieving the best classification accuracy. It is easily extendable to other medical image classification problems.
منابع مشابه
Data Augmentation by Pairing Samples for Images Classification
Data augmentation is a widely used technique in many machine learning tasks, such as image classification, to virtually enlarge the training dataset size and avoid overfitting. Traditional data augmentation techniques for image classification tasks create new samples from the original training data by, for example, flipping, distorting, adding a small amount of noise to, or cropping a patch fro...
متن کاملGAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification
Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017